Synthesis of Novel Chiral Ruthenium Complexes of 2,2'-Bis(diphenylphosphino)-1,1'**binaphthyl and their Use as Asymmetric Catalysts**

Takao Ikariya,*a Youichi Ishii,a Hiroyuki Kawano,a Tsuneta Arai,a Masahiko Saburi,a Sadao Yoshikawa,a and **Susumu Akutagawab**

a *Department of Synthetic Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan*

Central Research Laboratory, Takasago Perfumery Co. Ltd., 36-31-5, Kamata, Ohta-ku, Tokyo 144, Japan

Reactions of $[RuCl_2(COD)]_n$ (COD=cyclo-octa-1,5-diene) with the chiral bidentate phosphine ligands 2,2'**bis(diphenylphosphin0)-1,1** '-binaphthyl, BINAP, and **2,2'-bis(di-p-tolylphosphino)-l,l** '-binaphthyl, p-tolyl-BINAP, give new chiral ruthenium(ii) complexes, Ru₂Cl₄(BINAP)₂(NEt₃) and Ru₂Cl₄(p-tolyI-BINAP)₂(NEt₃) respectively, which serve as excellent catalysts for asymmetric hydrogenation of alkenes and some cyclic anhydrides.

In the last decade a number of rhodium complexes coordinated with chiral bidentate phosphine ligands have been prepared, and employed as catalysts for asymmetric reactions to give products with enantiomeric excesses as high as 99%.1 In contrast, little is known with regard to the asymmetric reactions catalysed by chiral ruthenium complexes in spite of the well documented catalytic activity of ruthenium catalysts.² This is possibly because only a limited number of chiral bidentate phosphine ruthenium complexes, such as Ru_2Cl_4 - $(DIOP)_3 (1),^{2a} RuHCl(DIOP)_2 (2),^{2b} [DIOP = 2,2-dimethyl-$ **4,5-bis(diphenylphosphinomethyl)-1,3-dioxolane]** and some cyclopentadienyl complexes3 have been available. This communication reports a convenient synthetic method for new ruthenium complexes having the chiral bidentate phosphine
ligands, BINAP, $2.2'$ -bis(diphenylphosphino)-1,1'- $2,2'$ -bis(diphenylphosphino)-1,1'binaphthyl, or p-tolyl-BINAP, **2,2'-bis(di-p-tolylphosphino)-** 1,l'-binaphthyl, and their uses in catalytic asymmetric reactions.

$$
Ru2Cl4(DIOP)3 \t RuHCl(DIOP)2 (1) \t (2)
$$

A conventional method, the ligand exchange reaction of $RuCl₂(PPh₃)₃$ with a chiral bidentate phosphine ligand, could not be used for the preparation of the bidentate phosphine complexes except for the preparation of the DIOP complex, $Ru_2Cl_4(DIOP)$ ^{$\bar{ }$} (1). We found that $[RuCl_2(COD)]_n^{\bar{ } }$ (3)⁴ $(COD = cycle-octa-1, 5-diene)$ was an excellent starting material for the rapid synthesis of a wide range of ruthenium chiral phosphine complexes. The reaction of (3) with $(-)$ - $BINAP(1:1.2)$ in the presence of triethylamine under toluene reflux conditions affords an orange-red complex **(4)** (85% yield), and a small amount **of** a yellow complex *(5)* (equation 1). S.

ligand exchange reaction of

tate phosphine ligand, could

of the bidentate phosphine

ation of the DIOP complex,

l that $[RuCl_2(COD)]_n$ (3)⁴

was an excellent starting

of a wide range of ruthenium

ne reaction of (3

$$
[RuCl2(COD)]n + (-)-BINAP
$$
\n(3)

$$
Ru_2Cl_4[(-)-BINAP]2(NEt3) + RuHCl[(-)-BINAP]2 (1)
$$

(4) (5)

The complex **(4)** can be recrystallized from CH_2Cl_2 -diethyl ether to give an orange microcrystalline product. N.m.r. (1H, $31P$, and $13C$) spectra as well as the elemental analysis data of

Table 1. Hydrogenation of α -acylaminoacrylic acids using Rh- and Ru-BINAP complexes.^a

^aHydrogenation reaction was carried out with [substrate] = 0.08 M and [Ru] = 0.001 **M** in the presence of triethylamine under 2 atm of hydrogen at 35 °C in ethanol-tetrahydrofuran (1:1) for 24 h. $\frac{1}{2}$ [Rh{(-)-BINAP}]ClO₄ or $[Rh{}_{1}(-)$ -BINAP}(MeOH)₂]ClO₄, **A.** Miyashita, H. Takaya, T. Souchi, and R. Noyori, Tetrahedron, 1984,40, 1245.

the complex **(4)** are consistent with the formulation.[†] In the **lH** n.m.r. spectrum of **(4),** the methyl and methylene protons of triethylamine appear, respectively, at δ 1.3 as a triplet and at 6 3.1 and 3.3 as two complex multiplets. The latter becomes a characteristic AB quartet by homonuclear decoupling of the methyl protons, indicating that the triethylamine co-ordinates to the ruthenium metal which has a chiral environment that makes the enantiotopic methylene protons inequivalent. The complex *(5)* was also prepared almost quantitatively by the reaction of complex (3) with $(-)$ -BINAP $(1:2)$ in the presence of triethylamine under ethanol reflux conditions. The complex *(5)* was determined to have a monohydride structure, $RuHCl[(-)-BINAP]_2$, on the basis of ¹H n.m.r. and i.r. spectral analyses as well as by analogy with the known DIOP complex (2). Similarly, (-)-p-tolyl-BINAP gave $Ru_2Cl_4[(-)-p$ -tolyl-BINAP]₂(NEt₃) (6) and RuHCl[(-)-ptolyl-BINAP], **(7).** This synthetic method should be widely applicable to other chiral bidentate phosphine ligands such as \overline{DIOP} , BPPM, BPPFA, and chiraphos. \ddagger^{5a}

$$
Ru2Cl4[(-)-p-tolyl-BINAP]2(NEt3)
$$

(6)
RuHCl[(-)-p-tolyl-BINAP]₂
(7)

The complexes **(4)** or **(6)** should provide a co-ordinatively unsaturated ruthenium species, $RuCl₂L₂$ (L = phosphine ligand), which is a rare structure for Ru¹¹ phosphine complexes6 and can be expected to serve as an asymmetric catalyst for hydrogenation of alkenes. The complex **(4)** exhibits excellent catalytic activity and a high stereoselectivity for the

hydrogenation of alkenes. As can be seen in Table 1, the asymmetric hydrogenation of a-acylaminoacrylic acids **(8)** using the complex **(4)** as the catalyst in the presence of triethylamine under relatively mild conditions provided almost quantitatively N-acylamino acids **(9)** with the (S) isomer in excess. An optical yield of **92%** has been achieved in the hydrogenation of \overline{Z} - α -benzoylaminocinnamic acid Z -(8b). The complex *(5)* also exhibits high stereoselectivity in the absence of triethylamine. Interestingly, the chirality induced in the products by the use of **(4)** is opposite to that obtained by a Rh-(-)-BINAP catalyst in similar solvent systems. Based on these results, as well as the established mechanism for the hydrogenation of alkenes catalysed by ruthenium complexes,^{2c} the configuration determining step of the system catalysed by **(4)** seems to be *via* a hydride species,5 in which the chiral induction of the product should result from the preferential co-ordination of one face of the alkene, rather than an 'unsaturated route'.2c It should be noted that under the same conditions the DIOP complex **(1)** exhibited no catalytic activity for this hydrogenation, presumably because of the stereochemical problems as mentioned by James and co-workers.2b

The complex **(4)** was also found to catalyse the asymmetric hydrogenation of prochiral or meso cyclic anhydrides to give the corresponding chiral lactones.2e The complex **(4)** was more effective than **(1)** for the hydrogenation of the prochiral glutaric anhydrides. The hydrogenated products of 3-methyland 3-phenyl-glutaric anhydrides, (3R)-3-methyl- and (3R)-3 phenyl-&valerolactone, have 39% and 33% optical purity (o.P.), respectively.

The enantioselectivity of this Ru complex **(4)** for hydrogenation of alkenes is comparable to the Rh-BINAP system.¹⁵ To our knowledge this is the first system to attain such a high stereoselectivity in the asymmetric hydrogenation of alkenes catalysed by chiral ruthenium complexes. This synthetic reaction should provide a general method for preparing ruthenium complexes of known chiral bidentate phosphine

t All new complexes obtained here gave satisfactory elemental analyses. (4) ${}^{31}P\{ {}^{1}H\}$ N.m.r., 62 [d, $2J(PP)$ 35 Hz], 57 p.p.m. [d, $2J(PP)$ 35 Hz] (downfield is positive from external PPh₃); **(5)** ¹H n.m.r., δ -16.2 (septet). Molecular conductivity, the limited solubility, and the i.r. spectrum suggest that complex (4) has a dimeric structure with bridging Cl ligands as in the complex $[RuCl₂(PPh₃)₂]$ (see ref. 6).

 \ddagger In toluene DIOP, (2S,4S)-N-t-butoxycarbonyl-2-[(diphenylphosphino)methyl]-4-(diphenylphosphino)pyrrolidine (BPPM), (S)-N, N-dimeth yl- 1 -[*(R)-* 1 ' ,2-bis(**diphenylphosphino)ferrocenyl]ethyl**amine (BPPFA), and **(S,S)-2,3-bisdiphenylphosphinobutane** (chiraphos) provide $Ru_2Cl_4(DIOP)_3$, $RuCl_2(BPPM)$, $RuCl_2(BPPFA)$, and $RuCl₂(chiraphos)₂$ respectively while in ethanol, BPPM gives $RuH₂(BPPM)₂$ (unpublished results).

complexes leading to development of asymmetric reactions catalysed by these ruthenium complexes.

Received, 22nd March 1985; Corn. 387

References 3

- 1 (a) **J.** Halpern, *Science,* **1982, 217, 401;** (b) A. Miyashita, **A.** Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, and R. Noyori, *J. Am. Chem. SOC.,* **1980, 102,7932;** (c) A. Miyashita, H. Takaya, **4** T. Souchi, and R. Noyori, *Tetrahedron,* **1984,40,1245;** K. Tani, T. Yamagata, **S.** Otsuka, **S.** Akutagawa, H. Kumobayashi, T. **5** Taketomi, H. Takaya, A. Miyashita, and R. Noyori, J. Chem. Soc., *Chem. Commun.,* **1982,600.**
- **2** (a) B. R. James, D. K. W. Wang, and R. **F.** Voight, *J. Chem. SOC., Chem. Commun.,* **1975, 574;** (b) B. R. James, R. **S.** McMillan, R. H. Morris, and D. K. W. Wang, *Adv. Chem. Ser.,* **1978, 167,**

122; (c) B. **R.** James, in 'Homogeneous Hydrogenation,' Wiley, New York, **1973;** (d) U. Matteoli, P. Frediani, M. Bianchi, C. Botteghi, and **S.** Gladiali, J. *Mol. Catal.,* **1981, 12, 265;** (e) **K.** Osakada, M. Obana, T. Ikariya, M. Saburi, and *S.* Yoshikawa, *Tetrahedron Lett.,* **1981,22,4297;** Y. Ishii, **K.** Osakada, T. Ikariya, M. Saburi, and *S.* Yoshikawa, *Chem. Lett.,* **1982, 1179;** Y. Ishii, **I.** Sasaki, T. Ikariya, M. Saburi, and *S.* Yoshikawa, *Nippon Kagaku Kaishi,* **1985, 465.**

- G. Consiglio, **F.** Morandini, G. Ciani, **A.** Sironi, and M. Kretschmer, J. *Am. Chem.* **Soc., 1983,** *105,* **1391;** G. Consiglio, F. Morandini, and F. Bangerter, *Inorg. Chem.*, 1982, 21, 455.
- 4 M. A. Bennett and G. Wilkinson, *Chem. Ind. (London)*, 1959, 1516.
- (a) **H.** B. Kagan, in 'Comprehensive Organometallic Chemistry,' Vol. **8,** ed. G. Wilkinsan, Pergamon, Oxford, **1982, p. 463; (b) 1.** Ojima, T. Kogure, and **N.** Yoda, *Chem. Lett.,* **1979,495;** B. R. James and D. Mahajan, J. *Organomet. Chem.,* **1985, 279, 31.**
- **6** P. R. Hoffman and K. G. Caulton, *J. Am. Chem. SOC.,* **1975, 97, 4221.**